
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 3: Synchronization

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Announcements
Get started on Project 1.

Due in two weeks, May 27
Read the project spec carefully!
Get familiar with the tools, git, gdb, VS Code, etc.
(Valgrind will not work with P1.)

Attempt pre-lab questions for Friday’s lab section.

2

Today

Ensuring that you have enough but not too much
milk at home

Managing threads

What do these have to do with each other?

3

4

The Process
The process is the OS
abstraction for execution.

Process 1 Process 2 Process 3

CPU, memory, i/o devices

Process 1 Process 2 Process 3

CPU CPU CPU

The reality

The abstraction

Recap: Threads
Benefits:

Simplify concurrent programming.
Useful when there is a slow
resource.

Challenge:
Share parts of address space.
Prevent undesired outcomes?

5

Stack (T1)

Code

Heap

Stack (T2)

Stack (T3)

Non-deterministic ordering 
Non-deterministic results

Arithmetic example (y is initially 10)
What’s being shared between these
threads?

y
Possible results?

If A runs first: x = 11 and y = 20
If B runs first: x = 21 and y = 20

6

Thread A
x = y + 1

Thread B
y = y * 2

Non-deterministic ordering 
Non-deterministic results

Another example
Possible results?

x = 1 or -1
Impossible results?

x = 0

7

Thread A
x = 0
x = 1

Thread B
x = 0
x = -1

Non-deterministic ordering 
Non-deterministic results

A final example
Possible results?

x = 0, 1 or -1
Impossible results?

x = 2, -2

8

Thread A
x = 0
x++

Thread B
x = 0
x--

Atomic operations
Before we can reason at all about cooperating threads, we
must know that some operation is atomic.
1. It’s indivisible. It happens in its entirety or not at all.
2. No events from other threads can occur in between

when it starts and when it finishes.

9

Atomic operations
On most computers:

1. Memory load and store are atomic.

2. Many other instructions, e.g., double precision
floating point, are not atomic.

Need an atomic operation to build bigger atomic
operations.

10

Example

What if each print statement were atomic?
What if printing a single character were not atomic?

11

Thread 1
Print ABC

Thread 2
Print 123

Example

Which thread will exit its while loop first?
Is the thread that exits first guaranteed to print first?
Is it guaranteed that anything will print?

12

Thread A
i = 0;
while (i < 10)

i++;
print "A finished";

Thread B
i = 0;
while (i > -10)

i--;
print "B finished";

Assume i is a global shared variable.

Debugging Multi-Threaded Programs
Challenging due to non-deterministic interleaving.
Heisenbug: a bug that occurs non-deterministically

13

Something for you to worry about?
YES!!!
Think Murphy’s Law.
lFamous errors:
1. Northeast blackout of 2003
2. Over-radiation in Therac-25
lAll possible interleavings must be correct.

Synchronization
Objective:

Constrain interleavings between threads such that all
possible interleavings produce a correct result.

Trivial solution:
Run each until it finishes before starting the next but that
defeats the purpose of threads.

Challenge:
Constrain thread executions as little as possible

Insight:
Some events are independent  order is irrelevant
Other events are dependent  order matters

14

Too much milk
Problem definition:
1. Obama family wants to always have

one jug of milk.
2. No room for two jugs of milk.
3. Whoever sees the fridge empty goes

to buy milk.

Solution 0, no synchronization.

15

Barack
if (noMilk)

buy milk;

Michelle
if (noMilk)

buy milk;

Problems?

Race condition!

First type of synchronization: Mutual exclusion

Ensure that only 1 thread is doing a certain thing at any
moment in time.

“Only 1 person goes shopping at a time”
Constrains interleavings of threads

Does this remind you of any other concept we’ve talked
about?

16

Critical section
A section of code that needs to be run
atomically with respect to selected other
pieces of code.

Critical sections must be atomic w.r.t each
other because they access a shared
resource.

In our example, the critical section is:

if (nomilk)
buy milk;

How do we make this critical section
atomic?

17

Barack
if (noMilk)

buy milk;

Michelle
if (noMilk)

buy milk;

Solution 1
Leave a note that you’re going
to check on the milk, so the
other person doesn’t also buy.

Assume the only atomic
operations are load and store.

18

Does this work?

Is it better than solution 0?
A little, there’s a smaller window when
both might go out, but they could still
end up with too much milk.

Barack
if (noNote)

{
leave note;
if (noMilk)

buy milk;
remove note;
}

Michelle
if (noNote)

{
leave note;
if (noMilk)

buy milk;
remove note;
}

Solution 2
Label the notes and change
the order of “leave note” and
“check note”.

19

Problems?

Barack
leave noteBarack;
if (noNoteMichelle)

if (noMilk)
buy milk;

remove noteBarack;

Michelle
leave noteMichelle;
if (noNoteBarack)

if (noMilk)
buy milk;

remove noteMichelle;

Nobody buys milk.

Solution 3
Decide who buys milk when both
leave notes at same time.

Barack hangs around to make sure
job is done.

Barack’s “while (noteMichelle)”
prevents him from entering the
critical section at the same time as
Michelle.

20

Barack
leave noteBarack;
while (noteMichelle)

;
if (noMilk)

buy milk;
remove noteBarack;

Michelle
leave noteMichelle;
if (no noteBarack)

if (noMilk)
buy milk;

remove noteMichelle;

Proof of correctness

21

Barack
leave noteBarack;
while (noteMichelle)

;
if (noMilk)

buy milk;
remove noteBarack;

Michelle
leave noteMichelle;
if (no noteBarack)

if (noMilk)
buy milk;

remove noteMichelle;

if no noteM, it’s safe to buy. (He’s
already left noteBarack, which
Michelle will check.)
if noteM, Barack waits to see what
Michelle does and decides whether to
buy after Michelle exits.

if no noteB, then Barack hasn’t started
yet, so it’s safe to buy. (Barack will
wait for Michelle to be done before
checking.)
if noteB, then Barack will eventually
buy milk if needed. (Barack may be
waiting for Michelle to exit.)

Analysis of solution 3

22

Barack
leave noteBarack;
while (noteMichelle)

;
if (noMilk)

buy milk;
remove noteBarack

Michelle
leave noteMichelle;
if (no noteBarack)

if (noMilk)
buy milk;

remove noteMichelle;

Good
1. It works!
2. Relies on simple atomic

operations.

Bad
1.Complicated and not obviously

correct.
2.Asymmetric.
3.Not obvious how to scale to three

people.
4.Barack consumes CPU time while

waiting, called busy-waiting.

Higher-level synchronization
Raise the level of abstraction to make life easier
for programmers.

23

Operating System

Hardware

Applications

Atomic operations
(load/store, interrupt enable/

disable, test&set)

Concurrent programs

Higher-level synchronization
primitives

(lock, monitor, semaphore)

24

lock()
{
while (true)

if (lock is free)
{
acquire lock;
break;
}

}

unlock()
{
release lock;
}

A lock prevents another thread
from entering a critical section

“Lock fridge while checking
milk status and shopping”

Two operations:

1. lock(), wait until the lock is
free, then acquire it.

2. unlock(), release the lock.

Checking and acquiring must be
atomic.

Why was the note solutions 1 and
2 not a good lock?

Locks (mutexes)

Atomic

Solution using locks
Lock usage:
1. Initialized to free.
2. Acquire lock before

entering critical section.
3. Release lock when done

with critical section.
All synchronization involves
waiting.
Threads can be running or
blocked.

25

Barack
milk.lock();
if (noMilk)

buy milk;
milk.unlock();

Michelle
milk.lock();
if (noMilk)

buy milk;
milk.unlock();

Efficiency
But this prevents
Michelle from doing
things while Barack is
buying milk.

Can we minimize the
time the lock is held?

26

Barack
milk.lock();
if (noMilk)

buy milk;
milk.unlock();

Michelle
milk.lock();
if (noMilk)

buy milk;
milk.unlock();

Efficiency
Use a lock to
protect posting
or viewing of
any notes.

27

note.lock();
if (noNote)

{
leave note;
note.unlock();
if (noMilk)

buy milk;
note.lock();
remove note;
}

note.unlock();

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 3: Synchronization
	Announcements
	Today
	The Process
	Recap: Threads
	Non-deterministic ordering �		Non-deterministic results
	Non-deterministic ordering �		Non-deterministic results
	Non-deterministic ordering �		Non-deterministic results
	Atomic operations
	Atomic operations
	Example
	Example
	Debugging Multi-Threaded Programs
	Synchronization
	Too much milk
	First type of synchronization: Mutual exclusion
	Critical section
	Solution 1
	Solution 2
	Solution 3
	Proof of correctness
	Analysis of solution 3
	Higher-level synchronization
	Slide Number 24
	Solution using locks
	Efficiency
	Efficiency

